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1. Introduction

Recently, there have been very interesting progresses on the world-volume theory of multiple

M2-branes in M-theory. Since we expect that this theory is dual to AdS4 × S7 in the

decoupling limit, it should be described by a three dimensional N = 8 superconformal

theory. The superconformal Chern-Simons theories have been constructed in [1 – 3], though

they are less supersymmetric. Bagger, Lambert and Gustavsson constructed the three

dimensional N = 8 supersymmetric theory based on the Lie 3-algebra structure [4, 5].

For subsequent developments refer to [6]–[44]. If we assume the positive metric of the Lie

3-algebra, the algebra constraints the Lagrangian strongly [14, 18 – 20]. This only allows us

to construct a N = 8 supersymmetric theory which is dual to two M2-branes. If we allow

the non-degenerate metric, we can find N = 8 supersymmetric theories where we can take

the number of branes N arbitrary large [22 – 24, 34, 35, 38, 41]. However, this theory can

be reduced to the well-known N = 8 super Yang-Mills theory on N D2-branes.

Aharony, Bergman, Jafferis and Maldacena have constructed very interesting N = 6

U(N)×U(N) Chern-Simons theories (ABJM theory) and proposed that they are dual to the

world-volume theory of N M2-branes for the arbitrary number of N [45] (see also [46, 47]
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for further study). This theory is parameterized by the level k of the Chern-Simons gauge

theory. The ABJM theory with level k and the gauge group U(N) × U(N) is argued to

describe the world-volume theory of M2-branes on the orbifold C4/Zk. When the gauge

group is SU(2) × SU(2), this theory becomes equivalent to the BLG theory [4, 5].

In the paper [45], it was also pointed out that the ABJM theory at large k is dual to

the type IIA string on AdS4 × CP 3. This offers us to study a new AdS4/CFT3 duality

where both AdS and CFT side are tractable with the present knowledge of string theory.

The CFT side is defined by a ’t Hooft limit N → ∞ of ABJM theory with N
k kept finite.

As a next step, it will be very intriguing to check this proposed duality from both the

IIA string theory and the Chern-Simons gauge theory side. In this paper we would like to

report a modest progress in this direction. Namely, we would like to consider the Penrose

limit of the type IIA background because in this limit the string theory becomes solvable

even in the presence of α′ corrections and RR-fluxes. It has been well-known that the

Penrose limit of type IIB string on AdS5 × S5 successfully reproduces the results of BMN

operators in the N = 4 super Yang-Mills theory [48].

We will show that the Penrose limit of this IIA string background becomes the plane

wave background with 24 supersymmetries studied in [49] after an appropriate coordinate

transformation. We find1 the exact string spectrum and express the results as the anoma-

lous dimensions of operators in the ABJM theory. We will also notice that in the ABJM

theory, we can define a BMN-like operator and we will compute its anomalous dimension

to leading order of the effective ’t Hooft coupling.

We will also study the weak coupling limit k → ∞ of the ABJM theory. Since we

can neglect the non-singlet flux contributions in this limit, we can analyze the partition

function of the ABJM theory compactified on S1 × S2 analytically and show that the

deconfinement/confinement transition occurs at a specific temperature as expected from

the Hagedorn transition in the string theory side.

This paper is organized as follows. In section 2, we review and analyze in the detail

the reduction of AdS4 × S7 background in M-theory to the type IIA string. We will

also compute the holographic entanglement entropy of the ABJM theory. In section 3,

we take the Penrose limit of the IIA background. We compute the string spectrum and

express the results from the gauge theoretic viewpoint. In section 4, we define BMN-

like operators in ABJM theory and compute their anomalous dimensions. In section 5,

we evaluate the partition of free ABJM theory and confirm the Hagedorn transition at a

specific temperature. In section 6 we summarize our conclusions.

After we finished this paper, we noticed a very interesting preprint [47] by Bhattacharya

and Minwalla, where an agreement of the supersymmetric index between the N = 6 Chern-

Simons theory and its dual supergravity was shown. The section 5 of our paper has some

overlap with their calculations.

1The same plane-wave also appears in the study of the gravity dual of a 2+1 super Yang-Mills with

SU(2|4) symmetry [50], where the string spectrum is compared with the Yang-Mills operators.
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2. M2-branes on C4/Zk and reduction to IIA string

2.1 M2-brane solution

We start with the 11 dimensional supergravity action

S =
1

2κ2
11

∫

dx11√−g
(

R− 1

2 · 4!FµνρσF
µνρσ

)

− 1

12κ2
11

∫

C(3) ∧ F (4) ∧ F (4), (2.1)

where κ2
11 = 27π8l9p. The equations of motions read

Rµν =
1

2

(

1

3!
FµαβγFναβγ −

1

3 · 4!δ
µ
νFαβρσF

αβρσ

)

, (2.2)

and

∂σ(
√−gF σµνξ) =

1

2 · (4!)2 ǫ
µνξα1···α8Fα1···α4Fα5···α8. (2.3)

Then the near horizon limit of M2-brane solution becomes AdS4 × S7

ds2 =
R2

4
ds2AdS4

+R2dΩ2
7, (2.4)

where the radius R is given by R = lp(2
5N ′π2)

1
6 (N ′ is the number of the M2-branes). The

four form flux is found to be

F (4) =
3R3

8
ǫAdS4 , (2.5)

where ǫAdS4 is the unit volume form of the AdS4 space. If we assume the Poincare metric

ds2AdS4
= dr2

r2 + r2
∑2

µ=0 dx
µdxµ, we have ǫAdS4 = r2 or equally F012r = 3R3r2

8 .

2.2 The reduction to IIA

We take the Zk orbifold of S7 and reduce the M-theory background AdS4 × S7/Zk to

the type IIA string background following [45]. We can express S7 by the complex coor-

dinate X1,X2,X3 and X4 with the constraint |X1|2 + |X2|2 + |X3|2 + |X4|2 = 1. We can

parameterize S7 by

X1 = cos ξ cos
θ1
2
ei

χ1+ϕ1
2 ,

X2 = cos ξ sin
θ1
2
ei

χ1−ϕ1
2 ,

X3 = sin ξ cos
θ2
2
ei

χ2+ϕ2
2 ,

X4 = sin ξ sin
θ2
2
ei

χ2−ϕ2
2 , (2.6)

where the angular valuables run the values 0 ≤ ξ < π
2 , 0 ≤ χi < 4π, 0 ≤ ϕi ≤ 2π and

0 ≤ θi < π. Then the metric of S7 can be written as

ds2S7 = dξ2 +
cos2 ξ

4

[

(dχ1 + cos θ1dϕ1)
2 + dθ2

1 + sin2 θ1dϕ
2
1

]

+
sin2 ξ

4

[

(dχ2 + cos θ2dϕ2)
2 + dθ2

2 + sin2 θ2dϕ
2
2

]

. (2.7)
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Now we define new coordinates

χ1 = 2y + ψ, χ2 = 2y − ψ. (2.8)

The Zk orbifold action is now given by y ∼ y+ 2π
k . Then the metric of S7 can be rewritten

as follows

ds2S7 = ds2CP 3 + (dy +A)2, (2.9)

where

A =
1

2
(cos2 ξ − sin2 ξ)dψ +

1

2
cos2 ξ cos θ1dϕ1 +

1

2
sin2 ξ cos θ2dϕ2, (2.10)

and

ds2CP 3 = dξ2 + cos ξ2 sin2 ξ

(

dψ +
cos θ1

2
dϕ1 −

cos θ2
2

dϕ2

)2

+
1

4
cos2 ξ

(

dθ2
1 + sin2 θ1dϕ

2
1

)

+
1

4
sin2 ξ(dθ2

2 + sin2 θ2dϕ
2
2). (2.11)

This expression (2.11) of CP 3 can be found in e.g. [51].

By comparing the above result with the conventional reduction formula (below we

always work with the string frame metric setting α′ = 1)

ds211D = e−2φ/3ds2IIA + e
4
3
φ(dỹ + Ã)2, (2.12)

where ỹ is compactified as ỹ ∼ ỹ + 2π. Since we are taking the Zk orbifold, we identify

ỹ = ky, which leads to the value of dilaton

e2φ =
R3

k3
= 2

5
2π

√

N

k5
. (2.13)

The RR 2-form F (2) = dÃ in the type IIA string is explicitly given by

F (2) = k

(

− cos ξ sin ξdξ ∧ (2dψ + cos θ1dϕ1 − cos θ2dϕ2)

−1

2
cos2 ξ sin θ1dθ1 ∧ dϕ1 −

1

2
sin2 ξ sin θ2dθ2 ∧ dϕ2

)

, (2.14)

while the RR 4-form remains the same

F (4) =
3R3

8
ǫAdS4 . (2.15)

The string frame metric now becomes

ds2IIA = R̃2(ds2AdS4 + 4ds2CP3), (2.16)

where R̃2 = R3

4k = π
√

2N
k . In this way we obtain the AdS4 ×CP 3 IIA background [45, 52].

This background preserves the 24 supersymmetries including the near horizon enhancement

as it is dual to three dimensional N = 6 superconformal symmetry.
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2.3 Holographic entanglement entropy

To measure the degrees of freedom in a given conformal field theory, a useful quantity

is known as the entanglement entropy SA in addition to the ordinary thermodynamical

entropy. We expect that it becomes more important in CFT3 since in odd dimensions we

do not have a precise definition of the central charges. We trace out the subsystem A which

is defined by an infinite strip with the width l. Then the holographic area law formula in [53]

leads to the following result2 from the analysis of minimal surfaces in the Poincare AdS4

SA =

√
2

6π
N2

√

k

N

(

L

a
− 2π

Γ(3/4)2

Γ(1/4)2
· L
l

)

, (2.17)

where L represents the infinitely large length of the strip and a denotes the ultraviolet

cutoff (or the lattice spacing). Since SA is proportional to 1√
λ

in addition to the leading

factor N2 in the planar limit, we cannot explain this result from the free field theory ap-

proximation. Therefore we can say that this system is a more interacting theory than the

N = 4 Yang-Mills, where we can qualitatively reproduce the supergravity result of SA from

the free Yang-Mills [53].

3. Penrose limit of type IIA on AdS4 × CP 3

3.1 Penrose limit and plane wave solution

We would like to take the Penrose limit [48] of type IIA background AdS4 × CP 3. We

express the metric of AdS4 by

ds2 = − cosh2 ρdt2 + dρ2 + sinh ρ2dΩ2
2. (3.1)

The metric of CP 3 is given by (2.11). We are focusing on the null geodesic defined by

ρ = 0, θ1 = θ2 = 0, ξ =
π

4
. (3.2)

We introduce a new angular coordinate

ψ̃ = ψ +
ϕ1 − ϕ2

2
. (3.3)

The Penrose limit is defined by the following coordinate transformation

t+ ψ̃

2
= x+, R̃2 t− ψ̃

2
= x−, ρ =

r

R̃
, θi =

√
2yi

R̃
, ξ =

π

4
+
y3

2R̃
, (3.4)

setting R̃ to infinity with x±, r, y1, y2 and y3 kept finite.

In the end we find the following metric in this limit R̃→ ∞

ds2IIA = −4dx+dx− − (r2 + y2
3)(dx

+)2 + dx+(−y2
1dϕ1 + y2

2dϕ2)

+dr2 + r2dΩ2
3 + (dy2

1 + y2
1dϕ

2
1) + (dy2

2 + y2
2dϕ

2
2) + dy2

3. (3.5)

2Here we employed the explicit value Vol(CP 3) = π2

12
of the volume of CP 3 in the coordinate (2.11).
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At the same time, the RR fluxes becomes

F+y3 =
k

2R̃
, F+rΩ2 =

3k

2R̃
r2. (3.6)

If we define

ϕ̃1 = ϕ1 −
x+

2
, ϕ̃2 = ϕ2 +

x+

2
, (3.7)

we can rewrite the metric as

ds2IIA = −4dx+dx− −
(

r2 + y2
3 +

y2
1 + y2

2

4

)

(dx+)2

+dr2 + r2dΩ2
3 + (dy2

1 + y2
1dϕ̃1

2) + (dy2
2 + y2

2dϕ̃
2
2) + dy2

3 , (3.8)

which is a familiar form of the plane wave.

If we introduce the Cartesian coordinate (x1, · · ·, x8) in an obvious way we get

ds2 = −4dx+dx− −
(

4
∑

i=1

x2
i +

1

4

8
∑

i=5

x2
i

)

(dx+)2 +

8
∑

i=1

(dxi)2, (3.9)

with

F+4 =
k

2R̃
, F+123 =

3

2

k

R̃
. (3.10)

Since the dilaton is expressed as eφ = 2R̃
k , we can rewrite the values of RR-fluxes as

eφF+4 = 1 and eφF+123 = 3, which will be useful later.

This plane-wave background (3.10) in IIA string has been known in the literature [49]

and has been shown to have 24 supersymmetries as we expect.

3.2 Gauge theory interpretation

It is argued that the type IIA on AdS4 × CP 3 is dual to the ’t Hooft limit of N = 6

superconformal Chern-Simons theory with the level (k,−k) and the gauge group U(N) ×
U(N) in [45]. Since the gauge theory coupling in Chern-Simons theories is proportional to
1
k , the ’t Hooft coupling is identified with λ = N

k . Thus the ’t Hooft limit is defined as the

large N limit with λ = N
k kept finite. It is natural to expect that our Penrose limit should

correspond to a certain limit of this gauge theory.

The ABJM theory consists of the Chern-Simons U(N) × U(N) gauge potentials at

level (k,−k) coupled to the four chiral superfields A1, A2, B1 and B2, whose structure is

very similar3 to the Klebanov-Witten theory [54]. The fields (A1, A2, B̄1, B̄2) belong to the

(N, N̄) representation under the U(N)×U(N) gauge group and they transform as the fun-

damental representation under the SU(4) R-symmetry of this N = 6 Chern-Simons theory.

First we relate the transverse scalars in the directions of (X1,X2,X3,X4) in (2.6) with

the scalar fields4 (A1, A2, B̄1, B̄2) in the ABJM theory, following the SU(4) R-symmetry.

3The Penrose limit of the Klebanov-Witten theory AdS5 × T 1,1 has been studied in [55].
4In this paper we also express the scalar field part of the chiral superfield Ai and Bi.
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We denote the conformal dimension ∆ and define U(1) parts of R-charges J1, J2, J3 as

follows (here we still did not perform the shift ϕi → ϕ̃i in (3.7))

J1 = −i ∂

∂ϕ1

∣

∣

∣

ψ̃
= −i

(

∂

∂ϕ1
− 1

2

∂

∂ψ

)

,

J2 = −i ∂

∂ϕ2

∣

∣

∣

ψ̃
= −i

(

∂

∂ϕ2
+

1

2

∂

∂ψ

)

,

J3 = −i ∂
∂ψ

. (3.11)

Notice that in the final forms of three R-charges we fixed ψ̃, ϕ1 and ϕ2 to be constant.

Using the dependence of the angles in (2.6) we find

J1(A1) =
1

4
, J1(A2) = −3

4
, J1(B1) = −1

4
, J1(B2) = −1

4
,

J2(A1) =
1

4
, J2(A2) =

1

4
, J2(B1) = −1

4
, J2(B2) =

3

4
,

J3(A1) =
1

2
, J3(A2) =

1

2
, J3(B1) =

1

2
, J3(B2) =

1

2
. (3.12)

Now we would like to relate the light-cone momenta p+ and p− in the type IIA string

to the gauge theoretic quantities assuming the AdS4/CFT3 duality. To do this we need to

rewrite the metric in terms of ϕ̃i instead of ϕi as in (3.8). In this process, we regard any

derivative as the one with ψ̃, ϕ̃1 and ϕ̃2 fixed to be a constant. In the end, we find

2p− = i
∂

∂x+
= ∆ − J, 2p+ = i

∂

∂x−
=

∆ + J

R̃2
, (3.13)

where J is defined by

J = J3 +
1

2
J1 −

1

2
J2. (3.14)

Explicitly, we get

J(A1) =
1

2
, J(A2) = 0, J(B1) =

1

2
, J(B2) = 0. (3.15)

3.3 World-sheet analysis

First we analyze the bosonic sector. The world-sheet action in the light-cone gauge X+ =

2p+τ looks like (notice 0 ≤ σ ≤ π)

SB =
1

4πα′

∫

dσdτ∂aX
µ∂aX

νgµν(X),

=
1

4πα′

∫

dσdτ

[

8
∑

i=1

(

(∂τX
i)2−(∂σX

i)2
)

−4(p+)2
4
∑

i=1

(Xi)2−(p+)2
8
∑

i=5

(Xi)2

]

. (3.16)

Then we easily find that the spectrum is given by (setting α′ = 1)

2p−B =
∞
∑

n=−∞
N (1)
n

√

1 +
n2

(p+)2
+

∞
∑

n=−∞
N (2)
n

√

1

4
+

n2

(p+)2
, (3.17)
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where N (1) (and N (2)) denote the total occupation number of n-th string modes with re-

spect to the oscillators α1,2,3,4
n (and α5,6,7,8

n ). We always need to impose the level matching

condition ∞
∑

n=−∞
n(N (1)

n +N (2)
n ) = 0. (3.18)

Using the relation p+ = ∆+J
2R̃2

≃ J
R̃2

, we can rewrite the above formula in term of the

gauge theory quantities

∆ − J =

∞
∑

n=−∞
N (1)
n

√

1 +
2π2n2

J2
· N
k

+

∞
∑

n=−∞
N (2)
n

√

1

4
+

2π2n2

J2
· N
k
. (3.19)

As in the BMN case [48], we expect that the insertion of the string oscillators corre-

sponds to that of the impurity operators in Tr(A1B1)
J . Indeed, A1B1 and their powers

are the unique operators which satisfy5 ∆ − J = 0, as is clear from (3.15). Also notice

that Tr(A1B1)
J is the chiral primary operator. By inspecting the R-charge of impurities

we can easily identify (assuming the zero mode n = 0) the 4 oscillators α5,6,7,8
0 with

A1B2, A1Ā2, A2B1, , B̄2B1. (3.20)

Indeed these four operators satisfy ∆ − J = 1
2 . Therefore we argue that the oscillators

(α5
0 − iα6

0, α
5
0 + iα6

0, α
7
0 − iα8

0, α
7
0 + iα8

0) are dual to the replacement procedures

A1 → A2, B1 → Ā2, A1 → B̄2, B1 → B2. (3.21)

On the other hand, we expect that the three oscillators α1,2,3
0 should be dual to the covariant

derivative Dµ, where µ = 0, 1, 2. We still need to identify one more. There are six other

operators which satisfy ∆ − J = 1:

A1Ā1, Ā2B̄2, A2Ā2, B̄1B1, B̄2B2, B̄2Ā2. (3.22)

Among them only A1Ā1 and B̄2B2 are independent from the double excitations of the

previous operations in (3.20). Therefore, α4
0 is expected to be dual to a linear combination

of these operators.

Next we turn to the fermionic sector (we follow the convention in [56]). The fermion

part in the light cone gauge Γ+S = 0 in the Green-Schwartz formalism looks like

SF =
1

4πα′

∫

dτdσ∂aX
µS̄Γµ(δ

ab − ǫabΓ11)DbS, (3.23)

where S is a ten dimensional Majorana spinor and the covariant derivative Db is the

pullback to the world-sheet of the supercovariant derivative in IIA supergravity

Dµǫ = ∇µǫ+
eφ

4
FµνΓ

νΓ11ǫ− eφ

(4!)2
(3FαβγδΓ

αβγδΓµ − FαβγδΓµΓ
αβγδ)ǫ. (3.24)

5Here we neglect the contribution from the operators with Wilson line attached [45] since we are assuming

k is large.
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Then the action is simplified up to a constant

SF =

∫

dτdσ

[

S̄Γ+(∂τ + Γ11∂σ)S +
p+

2
S̄Γ+(Γ4Γ11 + 3Γ123)S

]

. (3.25)

The equation of motion becomes

(∂τ + Γ11∂σ)S = −p
+

2
(Γ4Γ11 + 3Γ123)S. (3.26)

By multiplying ∂τ − Γ11∂σ we obtain

(∂2
τ − ∂2

σ)S = (2p+)2µ2S, (3.27)

where

µ2 ≡ −
(

Γ4Γ11 + 3Γ123

4

)2

. (3.28)

Since 16µ2 = 10 − 6Γ123411, we can conclude that among eight physical fermions, half

of them have µ2 = 1, while other half do µ2 = 1
4 . This mass spectrum is exactly the same

as the bosonic one. Thus we find the fermion spectrum

2p−F =

∞
∑

n=−∞
N (1)
n

√

1 +
n2

(p+)2
+

∞
∑

n=−∞
N (2)
n

√

1

4
+

n2

(p+)2
, (3.29)

and the values of ∆− J for fermions are given by the same formula (3.19). Among totally

sixteen fermions in the dual gauge theory, four fermions satisfy ∆ − J = 1
2 and other four

fermions do ∆ − J = 3
2 , while the rest eight fermions have ∆ − J = 1. Therefore we find

that the string spectrum is consistent with this gauge theory fermionic operators at least

for the zero modes.

In this way have shown a nice matching between the zero modes of the IIA string

theory in the Penrose limit and the gauge theory operators. This is of course expected

since the operators dual to zero modes (or KK modes) are protected under the change of

the coupling constant.

4. BMN like operators

Motivated by the analysis of Penrose limit in the previous section we would like to examine

non-BPS operators in the ABJM theory. Especially, we are interested in the BMN-like

operators6 (almost BPS operators). Indeed it is not difficult to find analogous operators

(refer also to [2] for similar operators in less supersymmetric Chern-Simons theory.).

We would like to concentrate on the following operators assuming J is very large

On =
1√
2J

J
∑

l=0

e2πi
ln
J Tr[(A1B1)

lA1B2(A1B1)
J−l(A1B2)]. (4.1)

Notice that O0 is chiral primary since the index i and j of Ai and Bj are both symmetrized

independently. We can treat the impurity of the form A2B1 exactly in the same way.

6The existence of the spin chain like structure was already suggested in [2, 45].
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4.1 Anomalous dimension

We would like to compute two point functions of these operators and obtain the anomalous

dimensions to leading order. Since we know that the operator O0 is chiral primary and its

anomalous dimension is vanishing, we have only to consider the Feynman diagrams whose

results depend on n. Then the relevant part of the Lagrangian looks like (we follow the

convention in [45])

L =
2
∑

i=1

(

∂µA
i∂µĀi + ∂µB

i∂µB̄i
)

+
16π2

k2
Tr[B2A1B1B̄2Ā1B̄1] +

16π2

k2
Tr[B1A1B2B̄1Ā1B̄2].

(4.2)

Then the propagator is normalized as follows

〈Aiab̄(x)Ā
j
c̄d(0)〉 = 〈Bi

b̄a(x)B̄
j
dc̄(0)〉 =

δijδdaδc̄b̄
4π|x| , (4.3)

where we neglect any interactions which do not affect our leading computation of the

anomalous dimension.

Since the two interactions in (4.2) exchange B2 with the two nearest B1s, respectively,

they produce the phase factors e±2πin
J , which is very similar to the BMN analysis [48]. Also

notice that the insertion of either of these interactions adds two loops in the fat diagram

and leads to N2 factor. Therefore we obtain

〈On(x)On(0)〉 =
N

|x|2(J+2)

(

1 +
1

(4π)3
· 32π2N2

k2
(cos

2πn

J
− 1) · I(x)

)

, (4.4)

where I(x) = |x|3
∫ dy3

|y|3|x−y|3 and N is a normalization factor. Since I(x) ∼ 8π log xΛ (Λ is

the cutoff), we can conclude that the leading anomalous dimension δCS
n of On is given by

δCS
n = 4π2N

2n2

k2J2
+ · · ·, (4.5)

where · · · denotes the higher order terms with respect to N
kJ .

It is also useful to remember that in the original analysis of BMN operators there are

two different coupling constants: one is the rescaled ’t Hooft coupling λ
J2 and the other is

the effective string coupling J2

N [57]. The latter appears when we consider the non-planar

diagrams, which we neglected in the above. In our Chern-Simons gauge theory, we can

see that the non-planar corrections come with the same factor J2

N . Since in our argument

which derives (4.5), we keep the rescaled ’t Hooft coupling N
kJ a small value, the non-planar

correction is negligible if N ≪ k2.

4.2 Comparison with IIA plane wave

One may naively guess that the Penrose limit of the IIA string studied in section 3 corre-

sponds to the BMN-like limit assumed in the previous subsection

N

kJ
= finite, N ≪ k2, (4.6)
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as the analogous relation was true in the celebrated duality between AdS5 × S5 and the

four dimensional N = 4 Yang-Mills theory [48]. However, this does not seem to be the

case here, even though about the chiral primary operators there is a nice matching between

them as we have seen in the previous section. In fact, the anomalous dimension found in

the Penrose limit reads (see (3.19))

δIIAn =
2π2Nn2

kJ2
+ · · ·, (4.7)

for the impurities of A1B2 and A2B1. This is different from the result (4.5) obtained

from the IIA string spectrum on the plane wave by the factor 2N
k . In this string theoretic

calculation in the Penrose limit, we need to keep the string coupling e2φ small and p+ finite,

which requires

1

(p+)2
∼ N

kJ2
= finite, e2φ ∼

√

N

k5
≪ 1. (4.8)

We would like to argue that the disagreement between the leading anomalous dimen-

sions (4.5) and (4.7) is not a contradiction but is due to the violation of the BMN scaling (a

similar phenomenon in other type IIA backgrounds has been pointed out in [50]). Notice

that the violation of BMN scaling in this sort of computations (i.e. near BPS states to the

leading order of the large J limit) does not occur in the AdS5/CFT4 duality of the N = 4

super Yang-Mills theory.

In other words, we expect that the anomalous dimension of On in the large J limit of

the ABJM theory is given by

δn = f(λ)
n2

J2
+ · · ·, (4.9)

in terms of a certain function f(λ) of λ = N
k . Our results (4.5) and (4.7) predict the

following behaviors7

f(λ) → 2π2λ (λ→ ∞), and f(λ) → 4π2λ2 (λ→ 0). (4.10)

It will be very interesting to compute the function f(λ) exactly from the Chern-Simons

theory.

5. Free N = 6 Chern-Simons theory on S1 × S2

Obviously, another limit which we can take to make a given theory simpler and more

tractable is the weak coupling limit. We would like to finish this paper by studying the

weak coupling limit k → ∞ of the N = 6 Chern-Simons theory on S1 × S2. We will show

that the Hagedorn/deconfinement transition will occur in almost the same way as in the

N = 4 free Yang-Mills on S1 × S3 [58, 59].

7It is not difficult to find functions with these properties. Indeed, we can consider functions like f(λ) =

4π2 λ2

1+2λ
or f(λ) = 4π2 λ2√

1+4λ2
, for example.
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The original ABJM action in this limit becomes

SABJM =

∫

d3x
1

4π
Tr

[(

A(1) ∧ dA(1) +
2

3
√
k
A3

(1)

)

−
(

A(2) ∧ dA(2) +
2

3
√
k
A3

(2)

)]

+ Tr
∑

i=1,2

[

|D(+)
µ Ai|2 + |D(−)

µ Bi|2 + iψ̄i /D
(+)ψi + iχ̄i /D

(−)χi

]

+ O
(

1

k

)

, (5.1)

where we define the covariant derivatives

D(±)
µ = ∇µ ±

i√
k
(A(1)µ ⊗ 1− 1 ⊗A(2)µ). (5.2)

We must be careful in taking k infinity since a naive treatment spoils the Gauss’ law

constraint [59]. We must choose the gauge fixing by the temporal gauge

A(a) 0(x) =
√
k a(a), (a = 1, 2). (5.3)

Under this gauge fixing, the action (5.1) on S1 × S2 becomes

Sfree =iSCS(A(1);S
1 × S2) − iSCS(A(2);S

1 × S2) (5.4)

+Tr
∑

i=1,2

[

Āi

(

−(D′(+)
µ )2+

R
8

)

Ai+B̄i

(

−(D′(−)
µ )2 +

R
8

)

Bi+iψ̄i /D
′(+)ψi+iχ̄i /D

′(−)χi

]

,

where we included R
8 term which arises from a conformal coupling of the scalar field and

defined D
′(±)
µ = (D

′(±)
0 ≡ ∂0 ± i(a(1) ⊗ 1− 1⊗ a(2)),∇1,∇2). The Ricci scalar is R = 2 for

the unit two sphere, and integrating the matter fields out gives the one-loop effective action

Tr ln

(

−(D
′(±)
0 )2 −∇2 +

R
8

)

= −
∞
∑

n=1

1

n
zB(xn) (trUn trV −n + trU−n trV n),

Tr ln(−( /D′(±))2)=Tr ln

(

−(D
′(±)
0 )2−∇2+

R
8

)

=
∞
∑

n=1

(−)n+1

n
zF (xn) (trUn trV −n+trU−n trV n),

(5.5)

where we denote x = e−β and introduce U = eiβα(1) , V = eiβα(2) as Wilson loops along

S1. We omit the irrelevant terms independent of α and define the single-particle partition

function of bosons and fermions as

zB(x) =
x

1
2 (1 + x)

(1 − x)2
, zF (x) =

2x

(1 − x)2
. (5.6)

After all, the partition function becomes the expectation value of the Wilson loops of

U(N) × U(N) Chern-Simons gauge theory

Z =

∫

[DA(1)][DA(2)] exp
[

iSCS(A(1);S
1 × S2) − iSCS(A(2);S

1 × S2)

+
∞
∑

n=1

1

n
(4zB(xn) + (−)n+14zF (xn))(trUn trV −n + trU−n trV n)

]

,

=

〈

exp

[ ∞
∑

n=1

1

n
zn(x)(trU

n trV −n + trU−n trV n)

]〉

S1×S2

, (5.7)
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where, in the second equality, we define zn(x) = 4zB(xn) + (−)n+14zF (xn). It is known

that only singlet representation of the Wilson loops takes non-zero expectation value in

Chern-Simons gauge theory on S1 × S2 [60], then we can rewrite the above expression as

the matrix model

Z =

∫

[dU ][dV ] exp

[ ∞
∑

n=1

1

n
zn(x)(trU

n trV −n + trU−n trV n)

]

. (5.8)

Once taking the large-N limit, we can obtain the effective action

Ieff = N2
∞
∑

n=1

1

n

(

|un|2 + |vn|2 − zn(x)(unv−n + u−nvn)
)

, (5.9)

where un ≡ trUn/N, vn ≡ trV n/N and the first two terms in the right hand side come

from the measure.

We now consider the saddle point of the matrix model action (5.9). The eigenvalues

λ of the quadratic form in (5.9) with respect to (un, vn), read λ = 1 ± zn(x). Thus the

trivial saddle point un = vn = 0 is dominated if z1(x) < 1 since zn(x) is monotonically

decreasing function of n. For z1(x) > 1, one of the eigenvalues becomes negative and the

action is dominated by another saddle point which gives order N2 free energy. Then, there

is a deconfinement transition at z1(x) = 1 and the Hagedorn temperature is calculated

using (5.6) as TH = 1
log(17+12

√
2)

∼ 0.283648.

In this way we have shown that in the large k limit (free limit), a Hagedorn/deconfinement

transition occurs in the ABJM theory. In the strong coupling region N
k ≫ 1, this is ex-

pected from supergravities [61]: both the IIA string on CP 3 and the M-theory on S7/Zk
have the AdS4 black hole solution. To understand the finite k region in the gauge theory

side, which is dual to the M-theory, we need to take the non-singlet flux contributions [45]

into account and this will be an interesting future problem.

6. Conclusion

In this paper we examined the Penrose limit of the type IIA string on AdS4×CP 3, which is

argued to be dual to the N = 6 Chern-Simons gauge theory (ABJM theory) in the ’t Hooft

limit. We obtained the resulting plane wave background and compute the string spectrum

in terms of gauge theoretic quantities. For BPS operators, we find the agreement between

the IIA string and the ABJM theory. Also the string spectrum in the plane wave limit

provides us with an important prediction of the anomalous dimensions in certain sectors

which satisfy J ∼
√

N
k in the ABJM theory. We also analyzed the gauge theory sides and

argued that we can define BMN-like (almost BPS) operators when the R-charge J is large.

We calculated the leading anomalous dimensions for these BMN-like operators and found

that the results are different from the ones computed in the IIA string on the plane wave.

This shows that the BMN scaling in the ABJM theory is violated already in this near BPS

sector as opposed to the N = 4 super Yang-Mills theory. This issue definitely deserves

future studies.
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We also examined the weak coupling limit k → ∞ of the ABJM theory on S1 × S2

and evaluated the partition function at finite temperature. We showed that the Hage-

dorn/deconfinement transition occurs in this limit of the ABJM theory as naturally ex-

pected.
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